This transcript was exported on 02/06/2026
Speaker 1: How's it going, everyone? So I want to have a little discussion about how do you build complex software? How do you build out applications? And I want to give you my thought process, there's a lot of different ways that you can do this. So from what I noticed in the industry, there's like different mindsets of how you can potentially build out applications. Some people like to sit down in terms of like what they're about the code, they'll load up like UML diagrams, you know, a UML diagram is it looks like, like, as an example, let's say you're trying to to create a database and you want to set up some entities and some schemas. Some people sit down and they'll draw out this huge diagram of all these entities, how they interconnect, which is cool, but it's a very waterfall type of approach to software engineering. And from what I've learned or where I work and like the mindset that I have is I like to try to work in an agile mindset. So basically, instead of sitting down and trying to design out the diagram of what every single entity might look like for example in this application I'm building for Starcraft 2 build orders I could have sat down and tried to plan out every single database table and how they interconnect and how they do this and that and the other but what I found to be most beneficial to me is that start on one single thing that helps you implement the feature that you need right that's like the agile mindset of do the bare minimum that you need to do to actually create a feature for your users. Now the reason that I like to do that is because most of the time you don't know if what you're building is actually going to be useful for the users that you're building it for. You may spend weeks or months designing this giant system. You have all these nice diagrams with arrows and stuff and then you start coding it up and you realize that everything you designed is completely wrong or it's not going to work or it's just not fun to use or it's not good to like be maintainable in terms of the long scale projection of your system. So I try to avoid diagramming. Now if you get a feature where you need to like do something where like for example let's say they create this build and you need to have that send out an email and also send out notifications to people who might be subscribing to you as a user, then yeah I might sit down with Exceladraw and I might start diagramming out like what happens, how does the flow of code happen for this particular feature. But I'm just focusing on that one feature I'm trying to add. I'm not going to go off and start like adding all these different pieces to the puzzle, especially since if we're not focused on building that feature yet, then I would not waste time thinking about that feature. And this does have some drawbacks because sometimes you need to take a step back and think about the bigger the bigger pieces like you need to holistically look at what you're building and make sure that you're kind of engineering or you know maintainability and proper structure and sometimes you have to think about the what ifs but a lot of times what I notice is that the more you plan for the what ifs like oh what if the user needs to do this or what if the user needs to do that I'm going to go ahead and add that into my code you end up building a really hard to maintain monstrosity in my opinion because now you have a bunch of over-engineered like things in your code base that you may or may not even need right so don't add things to your code unless you know it's going to achieve the feature that you're trying to build out for the user. And I like to do this step-by-step so every feature along the way you continuously iterate and build upon the feature. And I'm not saying that the code you write has to be sloppy, like you should be shipping quality code, you should have tests that cover everything you write, you have integration tests, unit tests, end-to-end tests, you should make sure your code you know follows proper coding standards like you know clean code, you have your magic numbers removed, you have any constants pulled out to a shared location, you know, stuff is documented, stuff is commented. But I'm not, but what I am saying is like, don't try to add in a bunch of additional things into your code for the what ifs, right? You don't know what the user needs in the future. So don't try to code for that. So that's kind of the approach I like to take in the way that I've been kind of taught with where I work. And like, as I started in the industry to have an agile mindset of just build one feature and then ship it, get it out there in front of users so that they can play around with it and they can give you some feedback. Even if you have like a feature flag that basically only lets certain subset of users to use this new feature, it's more important to get this in front of like a test group of people so they can say, hey, you're wasting your time building this, like this is not what we want. We do not want this ability to basically create a build order for Starcraft 2 by clicking on buttons. I'd rather just go in and manually type stuff. If that's what your users want, then you don't have to spend weeks building out this feature that no one would ever want to use. And then also polluting your code base with a bunch of stuff that you're just going to end up deleting or just let sit around and rot that you don't want. And so that's kind of like the way I do things. Like I kind of start with a single user story. Like for example, in this build order project, I'm building that's using the t3 stack with like Prisma and Next and stuff. I basically just write down a single sentence, like as a user, I should be able to URL bookmark a search scenario and all the stuff that comes after that is all like implementation detail that's not really important And I just work towards implementing wherever that feature is And then once i'm done, I will just commit that and then hopefully your cicd pipeline will automatically deploy that to your users They can start using it and they can give you feedback and then you move on to the next User story so that's kind of like the agile mindset. I'm obviously i'm kind of boiling this down to the most basic explanation, there's a lot more that goes into it with like the planning and the orchestration of your stories and actually deploying these things and testing them. But overall, if you're working on like a side project, I like to just do this, just write out a simple feature and add the most minimal amount of code that you can make this feature work. Like for example, a user shall be able to upvote builds. Well if I wanted to add that, basically I would just go and find a single area like Like maybe it's here, maybe you want to be able to upload, upvote builds from this little card component, or maybe you have to go into the build itself to upvote. And you don't know like the good design. You won't know if it works better here, works better here, or works better on both pages until you actually get into the weeds of the implementation and start adding it in and start using it. And you realize, okay, with like analytics and tracking on your app, you notice that only 5% users are actually up voting builds on this page. So if you have it here and you have it here, you're kind of wasting that feature. So just delete it from here because it's extra noise for the user. So that's how you kind of go about building complex software. It's all about like understanding your user needs. What do they actually use? What do they not use? Can you delete the stuff that's used by a very small portion of users? And then also in terms of like the coding and the designing and you design and code the most minimal thing to get the feature working and then you might say that okay you're going to code yourself into a corner because you're just going to add code that's sloppy and it's not going to be extendable but the point is is that when you get a feature down the road that requires you to change or modify or extend your current code that's when you go back and you refactor your code to make it that you know solid approach or to make it that like design patterns approach to make it really extensible to make it really extendable and really modifiable and maintainable but yeah that's all i wanted to really rant about um i've met people who like to think about all the different edge cases when they're building code and that's fine too i think it's good to have now that's just my mindset again there's different types of people i have had people on my discord ask me like like a beginner on my discord whose Professor is basically telling them to design this huge UML diagram or ER diagram of like 20 database entities All from the get-go and I was basically telling him There's really no point to sitting down and doing that like the real benefit comes from just slowly adding these features for your users and getting them to use it and slowly adding migrations and changing your Database and getting everything built out There are teams who sit like would sit down and literally plan out every single page like they'll plan out this page and they'll have like designs for this page and they'll have designs for this page and before you even start getting into the code like all these pages are being like drawn out and designed with mocks and stuff and the mindset again like I think works best is just start on a single thing get a prototype out and get a mock-up just work on it implement it deploy it and then you move on to the next thing but one thing at a time get that feedback and iterate and make it better anyway I'm just rambling at this point so hopefully you guys enjoyed watching this give me a thumbs up if you did and be sure to join my discord if you want to talk to me directly or just find a place to hang out with other developers and get some help along the way as you're trying to learn how to code. Have a good day and happy coding.
How do I plan out my software development projects (talks about agile development).mp4 (Completed: 09/25/2024)
Transcript by GoTranscript.com	1
